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Abstract

In this paper the properties of the oscillatory motion of the system with non-polynomial damping is investigated. The

two limits for damping are the dry friction and linear viscous damping. The mathematical model of the system is a strong

nonlinear differential equation with fraction order velocity terms. Using the modified version of He’s homotopy

perturbation method the approximate analytic solution is obtained. The generating solution is assumed in the form which

corresponds to the system with linear viscous damping. Two special cases are considered: first, when the coefficient of the

damping force is small and second, when the damping force is close to dry friction. The obtained analytical solutions are

compared with numerical ones. They show good agreement.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In most textbooks, the vibrations of two typical damping systems are considered: the harmonic oscillator
with linear viscous damping

€xþ ð2dÞ _xþ o2x ¼ 0 (1)

and the harmonic oscillator with dry friction, i.e., with zeroth order damping

€xþ ð2dÞsgnð _xÞ _x0 þ o2x ¼ 0, (2)

with the initial conditions

xð0Þ ¼ A; _xð0Þ ¼ 0, (3)

where

sgnð _xÞ ¼

�1 for _xo0

0 for _x ¼ 0

1 for _x40
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75, (4)
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x is the displacement, t is time, d is the damping coefficient, o40 is the eigenfrequency, A40 is the initial
displacement and _x � dx=dt, €x � d2x=dt2. The term sgnð _xÞ takes into consideration the change of direction of
the friction force. Namely, the damping force has the opposite direction to the motion and changes sign with
velocity: for _x40 the sign is positive, and for _xo0 the sign is negative. The change of sign is for _x ¼ 0. It
means that the motion has to be divided into intervals bounded with the condition that the velocity is zero.

For the case when o4d the solution of Eq. (1) is oscillatory

x ¼ A expð�dtÞ cosðktÞ þ
d
k
sinðktÞ

� �
, (5)

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � d2

p
. (6)

The solution of Eq. (2) for the initial conditions (3) has the form

x ¼ ð�1Þn�1
2d
o2

� �
þ A� ð2n� 1Þ

2d
o2

� �� �
cosot, (7)

where n ¼ 1; 2; . . . represents the number of motion periods between two zero velocities ( _x ¼ 0): n ¼ 1; 3; 5 . . .
for from right to left when _xo0 and n ¼ 2; 4; 6; . . . from left to right when _x40. The motion stops for
A� ð2n� 1Þð2d=o2Þ ¼ 0 when the ’stop region’ is reached, i.e., when the initial position is equal or smaller
than j2d=o2j.

However, these two types of damping (linear viscous and dry friction) exist only theoretically. Some
indication for this conclusion is mentioned by Hemp [1], who proposed that the damping for a runaway
escapement mechanism is between the linear and zero form, i.e., the damping is of fraction order

0o
m

q
o1; moq. (8)

The differential equation of motion of the system with fraction order damping force is in general

€xþ o2xþ ð2dÞsgnð _xÞj _xjm=q ¼ 0 (9)

i.e., for the motion from right to left between two consecutive zeros of _x when _xo0

€xþ o2x ¼ ð2dÞj _xjm=q (10)

and for the motion from left to right when _x40

€xþ o2x ¼ �ð2dÞj _xjm=q, (11)

where j _xj is the absolute velocity of motion.
In this paper the vibrations of the system with fraction order damping are considered.
Usually, the systems with polynomial damping force and linear or nonlinear elastic force are considered

(see Refs. [2–5]). The oscillator with non-polynomial fraction order elastic force is investigated in the papers
[6–12]. The central result for the latter is that a system under the influence of such a force has periodic
solutions only when both the numerator (2mþ 1) and the denominator (2nþ 1) of the exponent of deflection
are odd. If one of them is even, the motion is not oscillatory. The method of harmonic balance is used to
calculate the analytical approximation of these periodic solutions [6]. The higher order harmonic balance
method combined with numerical procedure (see Refs. [7,8]) has been used to construct an analytical
approximation to a system modelled by an x4=3 potential. The generalization of the result is done by Hu and
Xiong [9]. For the case when the restoring force is close to signðxÞ, the small d-method is applied [10]. Using
the advantages of the first integral, the exact analytical expression for the period of periodic solutions of the
oscillator equation €xþ x1=ð2nþ1Þ ¼ 0 are determined [11]. Waluya and Horssen [12] applied the perturbation
method based on integrating factors to approximate first integrals for a generalized nonlinear Van der Pol
oscillator equation. The existence, uniqueness, stability and periods of the time-periodic solutions were
established straightforwardly.
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In this paper the previously mentioned methods and results are applied in order to solve analytically the
differential equation (9) with a fraction order damping term. The well known He’s homotopy perturbation
method (see Refs. [13–17]) is adopted for solving the strong nonlinear differential equation with fraction order
velocity. For the case when the coefficient of the damping force is small, i.e., the term with fraction order
velocity is small, the method of straightforward expansion [18] is used and the approximate analytic solution is
obtained. The special case when the damping force is close to dry friction, i.e., the fraction order of the
damping force is a small value, the method of variable amplitude and phase [19] is extended for solving
the differential equation. The approximate analytic solutions are compared with numeric ‘exact’ ones using
the Runge–Kutta solving procedure. The differences between solutions are discussed. The properties of the
system with fraction order damping are analyzed.

2. System with damping force close to linear viscous damping

The system with fraction order damping force close to linear is considered. The mathematical model of the
system is the differential equation (9) where the first time derivative is of fraction order. The approximate
solution of the differential equation (9) is obtained using the homotopy perturbation technique [13].

Remark 1. Due to the fact that Eqs. (10) and (11) correspond to Eq. (9) and have the same forms but the
opposite signs of the right-hand side terms, in this paper the application of the homotopy perturbation
technique is shown only for Eq. (10). The same procedure is evident for Eq. (11).

In view of the homotopy perturbation technique, we can construct the following homotopy for Eq. (10)
transforming the variable xðtÞ to X ðt; pÞ

€X þ o2X þ 2d _X ¼ pð2d _X þ ð2dÞj _X jm=qÞ, (12)

where p 2 ½0; 1� is the embedding parameter. The initial conditions are

X ð0; pÞ ¼ A; _X ð0; pÞ ¼ 0. (13)

In case p ¼ 0, Eq. (9) becomes

€X þ o2X þ 2d _X ¼ 0, (14)

the solution of which is Eq. (5) for X ðt; 0Þ ¼ xðtÞ. For p ¼ 1 Eq. (12) turns out to be the original differential
equation (10) with fraction order damping, and the solution is

X ðt; 1Þ ¼ xðtÞ.

Remark 2. The homotopy method admits the introduction of the linear operator (14) which describes the
physical sense of motion and does not require the solution of the mathematical linear part of Eq. (9) to be
the basis function for further approximation. From the physical points of view it is known that the sum of the
kinetic and potential energy of the considered system does not keep the same, but decreases. The solution is
approximated by a quasi-periodic function on a time interval of half the period of the non-damped motion.
The solution should decay.

The solution of Eq. (12) can be written as a power series in p

X ¼ x0 þ px1 þ � � � (15)

Substituting Eq. (15) into Eq. (12) and separating the terms with the same order of the parameter p, the
following system of differential equations is obtained:

p0 : €x0 þ o2x0 þ 2d _x0 ¼ 0, (16)

p1 : €x1 þ o2x1 þ 2d _x1 ¼ 2d _x0 þ ð2dÞj _x0j
m=q,

. . . (17)
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with the initial conditions for Eq. (16)

x0ð0Þ ¼ A; _x0ð0Þ ¼ 0, (18)

and for Eq. (17)

x1ð0Þ ¼ 0; _x1ð0Þ ¼ 0, (19)

According to Eq. (5) and initial conditions (18), the solution of Eq. (10) is

x0 ¼ A expð�dtÞ cosðktÞ þ
d
k
sinðktÞ

� �
, (20)

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � d2

p
. (21)

Using Eq. (20), the first-order deformation equation is

€x1 þ 2d _x1 þ o2x1 þ 2dA expð�dtÞ
o2

k
sinðktÞ

� ð2dÞ �A
o2

k
expð�dtÞ sinðktÞ

����
����
m=q

¼ 0. (22)

Introducing the Fourier series expression (see Ref. [20]) for the function

exp
q

m
� 1

� 	
dt

� 	
sinðktÞ

h im=q

¼
a0

2
þ
X1
k¼1

ðak cosðkktÞ þ bk sinðkktÞÞ, (23)

into Eq. (22) it follows

€x1 þ 2d _x1 þ o2x1 � expð�dtÞ a0d �A
o2

k

����
����
m=q

þ 2da1 �A
o2

k

����
����
m=q

cosðktÞ

"

þ 2d �A
o2

k
þ b1 �A

o2

k

����
����
m=q

 !
sinðktÞ

þð2dÞ �A
o2

k

����
����
m=qX1

k¼2

ðak cosðkktÞ þ bk sinðkktÞÞ

#
¼ 0, (24)

where the coefficients a0, ak and bk depend on the fraction m=q. We obtain the solution of Eq. (24)
with Eq. (19)

x1 ¼
2d
k2
�A

o2

k

����
����
m=q

expð�dtÞ
a0

2
ð1� cosðktÞÞ

"

þ
X1
k¼2

ak

1� k2
ðcosðkktÞ � cosðktÞÞ þ

bk

1� k2
ðsinðkktÞ � k sinðktÞÞ

� �#

�
d
k

A
o2

k
� b1 �A

o2

k

����
����
m=q

 !
expð�dtÞ t cosðktÞ �

1

k
sinðktÞ

� �

þ
d
k

a1 �A
o2

k

����
����
m=q

expð�dtÞt sinðktÞ. (25)
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Using Eqs. (20) and (25), the solution in the first approximation is determined

x ¼ expð�dtÞ A cosðktÞ þ
d
k2
�A

o2

k

����
����
m=q

a0ð1� cosðktÞÞ

(

�
d
k

A
o2

k
� b1 �A

o2

k

����
����
m=q

 !
t cosðktÞ �

1

k
sinðktÞ

� �

þ
d
k
sinðktÞ Aþ a1t �A

o2

k

����
����
m=q

" #)
. (26)

Analyzing the relations obtained, the following is obvious:
1.
 For the special case when the damping parameter is zero (d ¼ 0), the solution (26) simplifies to

x ¼ A cosot,

which represents the well known solution of a harmonic oscillator for the initial conditions (3).

2.
 If m=q ¼ 1, the damping is the linear function of velocity, the solution (26) transforms to Eq. (5) which

corresponds to the linear viscous damping system (1).

3.
 The homotopy perturbation method uses the imbedding parameter p as a small parameter and only few

iteration are enough for asymptotic solution.

4.
 Due to straightforward expansion (15) the approximate solution (26) contains the so-called secular term

with the factor t sinðktÞ. Because of secular term, expansion (15) is not quasi-periodic. Thus x1 does not
provide a small correction to x0.
5.
 Using the physical point of view the improvement of the approximation is necessary. The expansion for o
and d is introduced

o2
0 ¼ o2 þ po1 þ . . . ; d0 ¼ dþ pd1 þ . . . , (27)

i.e.,

o2 ¼ o2
0 � po1 � . . . ; d ¼ d0 � pd1 � . . . , (28)

where o1 and d1 are frequency and damping correction parameters, respectively. Substituting Eqs. (15) and
(28) into Eq. (12) and separating the terms with the same order of the parameter p, the following system of
differential equations is obtained:

p0 : €x0 þ o2
0x0 þ 2d0 _x0 ¼ 0, (29)

p1 : €x1 þ o2
0x1 þ 2d0 _x1 ¼ o1x0 þ 2ðd1 þ d0Þ _x0

þ ð2d0Þj _x0j
m=q.

. . . (30)

The assumption of the solution of Eq. (29) in the form (20) and substitution of Eq. (28) into Eq. (30) leads to
the following second-order differential equation:

€x1 þ 2d0 _x1 þ o2
0x1 � expð�d0tÞ a0d0 �A

o2
0

k0

����
����
m=q

"

þ o1Aþ 2d0a1 �A
o2

0

k0

����
����
m=q

 !
cosðk0tÞ



ARTICLE IN PRESS
L. Cveticanin / Journal of Sound and Vibration 317 (2008) 866–882 871
þ o1A
d0
k0
� 2ðd1 þ d0ÞA

o2
0

k0
þ 2d0b1 �A

o2
0

k0

����
����
m=q

 !
sinðk0tÞ

þð2d0Þ �A
o2

0

k0

����
����
m=qX1

k¼2

ðak cosðkk0tÞ þ bk sinðkk0tÞÞ

#
¼ 0. (31)

Eliminating the secular terms in Eq. (31) the correction parameters are determined

o1 ¼ �
2d
A

� �
�A

o2

k

����
����
m=q

a1; d1 ¼ �dþ
kd

Ao2
�A

o2

k

����
����
m=q

b1 � a1
d
k

� �
. (32)

Applying the homotopy perturbation procedure and using Eq. (32) the general form of parameter corrections
for Eq. (9) are obtained

o1 ¼ �ð�1Þ
n�1 2d

A

� �
�A

o2

k

����
����
m=q

a1; d1 ¼ �dþ ð�1Þ
n�1 kd

Ao2
�A

o2

k

����
����
m=q

b1 � a1
d
k

� �
, (33)

where n ¼ 1; 2; 3; . . . : n ¼ 1; 3; 5; . . . for Eq. (10) and n ¼ 2; 4; 6; . . . for Eq. (11). According to Eq. (27) and the
relations (33), the frequency and damping parameters are in the first approximation

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 1� 2pð�1Þn�1a1

d
k

� �
k

Ao2

� 	1�m=q
� �s

, (34)

d0 ¼ ð�1Þ
n�1 dp

k
k

Ao2

� 	1�m=q

ðkb1 � da1Þ. (35)

For p ¼ 1 we obtain

o2
0 � o2 1� 2ð�1Þn�1a1

d
k

� �
k

Ao2

� 	1�m=q
� �

, (36)

d0 � ð�1Þ
n�1 d

k
k

Ao2

� 	1�m=q

ðkb1 � da1Þ (37)

and the approximate value of k0 is

k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 1� 2a1

d
k

� �
k

Ao2

� 	1�m=q
� �

�
d
k

� �2 k
Ao2

� 	2ð1�m=qÞ

ðkb1 � da1Þ
2

s
. (38)

Using Eq. (20) with Eqs. (36)–(38), the solution in the first approximation is

x ¼ A exp �t ð�1Þn�1
d
k

k
Ao2

� 	1�m=q

ðkb1 � da1Þ

� �� �

� cos t o2 � 2ð�1Þn�1a1
do2

k

� �
k

Ao2

� 	1�m=q

�
d
k

� �2 k
Ao2

� 	2ð1�m=qÞ

ðkb1 � da1Þ
2

" #1=28<
:

9=
;

0
@
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þ
d
k

ð�1Þn�1ðkb1 � da1Þ

o2 � 2ð�1Þn�1a1
do2

k

� �
k

Ao2

� 	1�m=q

�
d
k

� �2 k
Ao2

� 	2ð1�m=qÞ

ðkb1 � da1Þ
2

" #1=2 k
Ao2

� 	1�m=q

�sin t o2 � 2ð�1Þn�1a1
do2

k

� �
k

Ao2

� 	1�m=q

�
d
k

� �2 k
Ao2

� 	2ð1�m=qÞ

ðkb1 � da1Þ
2

" #1=28<
:

9=
;
1
A. (39)

Analyzing the relations it can be concluded:
1.
 The frequency of vibrations depends on the initial amplitude A; the exception is for k=Ao2 ¼ 1 when the
frequency is

k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 1� 2a1

d
k

� �� �
�

d
k

� �2

kb1 � da1ð Þ
2

s
. (40)
2.
 The frequency of vibration depends on the fraction order m=q.

3.
 The parameter of amplitude decrease d0 depends on the initial amplitude and the fraction order of the

damping force (see Eq. (37)). For k=Ao2 ¼ 1, the amplitude decrease depends only on the value of m=q:

d0 � d b1 �
d
k

a1

� �
. (41)
4.
 If m=q ¼ 1, the damping is the linear function of velocity, and the Fourier coefficients (23) are

a1 ¼ 0; b1 ¼ 1, (42)

and the correction parameters (33) are

o1 ¼ 0; d1 ¼ 0. (43)

The solution (39) transforms to Eq. (5) which corresponds to the linear viscous damping system (1).

5.
 For m=q ¼ 0, when ðsinðk0tÞÞ0 ¼ 1, the Fourier coefficients (23) are zero (a1 ¼ 0, and b1 ¼ 0), and the

correction parameters are

o1 ¼ 0; d1 ¼ �d. (44)

The vibration parameters are o0 ¼ o and d0 ¼ 0, and the motion corresponds to the case of dry friction (4).

3. System with small damping coefficient

It is of special interest to analyze the system with small damping. For the case when the coefficient of the
damping force is small, i.e.,

2d51, (45)

the differential equation (9) transforms to the differential equation with small nonlinearity

€xþ o2xþ e sgnð _xÞj _xjm=q ¼ 0, (46)

i.e.,

€xþ o2x ¼ �ej _xjm=q, (47)

where

e ¼ 2d, (48)
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and the upper ðþÞ sign correspond to ( _xo0) and the lower sign ð�Þ to ( _x40). The sign changes for _x ¼ 0. In
order to solve Eq. (46), the method of straightforward expansion is introduced.

Remark 3. The procedure applied for solving the differential equation (47) with positive sign is the same as for
the other differential equation with negative sign. In the paper the solving procedure for the differential
equation with positive sign is introduced.

Assuming the solution of Eq. (47) in the form of series

x ¼ x0 þ ex1 þ . . . ; o2
0 ¼ o2 þ eo1 þ . . . , (49)

and by substituting into Eq. (47), the following system of differential equations is obtained:

e0 : €x0 þ o2
0x0 ¼ 0, (50)

e1 : €x1 þ o2
0x1 ¼ o1x0 þ j _x0j

m=q,

. . . . (51)

For the initial conditions (18) the solution for x0 is

x0 ¼ A cosðo0tÞ. (52)

For e ¼ 0 the frequency is o ¼ o0. Substituting Eq. (52) into Eq. (51), the linear nonhomogeneous differential
equation is obtained

€x1 þ o2
0x1 ¼ o1A cosðo0tÞ þ j � Ao0 sinðo0tÞjm=q. (53)

Transforming the trigonometric function [20]

sinm=q
ðo0tÞ ¼

a00
2
þ
X1
k¼1

a0k cosðko0tÞ, (54)

where a00 and a0k are coefficients which depend on (m=q), and substituting into Eq. (53) yields

€x1 þ o2
0x1 ¼

a	0
2
þ ðo1Aþ a	1Þ cosðo0tÞ þ

X1
k¼2

a	k cosðko0tÞ, (55)

where

a	0 ¼ a00j � Ao0j
m=q; a	1 ¼ a01j � Ao0j

m=q; a	k ¼ a0kj � Ao0j
m=q. (56)

Eliminating the secular term the frequency correction is obtained

o1 ¼ �
a	1
A
. (57)

The solution of Eq. (55) is

x1 ¼ K1 þ K2 coso0tþ K3 sino0tþ
X1
k¼2

ðC	k cosðko0tÞÞ, (58)

where

K1 ¼
a	0
2o2

0

; C	k ¼
a	k

o2
0ð1� k2

Þ
, (59)
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and K2 and K3 are arbitrary constants calculated according to initial conditions (19)

K2 ¼ �K1 �
X1
k¼2

C	k; K3 ¼ 0.

Based on Eqs. (49), (52) and (58) with Eq. (59) the solution of Eq. (47) in the first approximation is

x ¼ A�
ea	0
2o2
� e
X1
k¼2

a	k

o2ð1� k2
Þ

 !
cosotþ

ea	0
2o2
þ
X1
k¼2

e
a	k

o2ð1� k2
Þ
cosðkotÞ, (60)

where

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � e

a	1
A

r
. (61)

In general, the solution of Eq. (46) in the first approximation is

x ¼ ðA0 þ eK2Þ coso0t� eK1 þ eK3 sino0t�
X1
k¼2

eC	k cosðko0tÞ. (62)

where A0 is the initial amplitude which is different for all intervals of motion between two consecutive zero
velocities and

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � e

a01j � A0o0j
m=q

A0

s
. (63)

For

m

q
¼

2N

2M þ 1
; M ¼ 1; 2; 3; . . . ; N ¼ 1; 2; 3; . . . ,

the sin terms in Fourier series [20] are zero. Using only the first three terms of Fourier expansion the
approximate solution is obtained. In general, the solution in the first approximation is

x ¼ A0 coso0tþ eA1 coso0tþ ð�1Þn�1eðK1 þ C	2 cos 2o0tÞ (64)

and the corresponding time derivative is

_x ¼ �o0½ðA0 þ eA1Þ þ 4ð�1Þn�1eC	2 coso0t� sino0t, (65)

where A0 and A1 depend on the initial conditions. Analyzing the relation (65), it is obvious that the velocity is
zero for sino0t ¼ 0, i.e.,

T ¼
ðn� 1Þp

o0
�
ðn� 1Þp

o
. (66)

It means that the time limits for one direction of motion are ðn� 1Þp=o and np=o.
Substituting the lower time limit in Eq. (64), the boundary position xðn�1Þb is

xðn�1Þb ¼ ð�1Þ
n�1
½A0 þ eA1 þ eðK1 þ C	2Þ�. (67)

Separating the terms with e0 and e1, the following is obtained:

x0ðn�1Þb ¼ ð�1Þ
n�1A0; x1ðn�1Þb ¼ ð�1Þ

n�1
ðA1 þ K1 þ C	2Þ. (68)

Using these relations, the arbitrary constants are defined

A0 ¼ ð�1Þ
n�1x0ðn�1Þb; A1 ¼ ð�1Þ

n�1x1ðn�1Þb � ðK1 þ C	2Þ. (69)
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For the other limit value of time, the boundary position is

xnb ¼ ð�1Þ
n�1
ð�A0 � eA1 þ eðK1 þ C	2Þ�

¼ ð�1Þ2n�1x0ðn�1Þb � ex1ðn�1Þb þ 2eð�1Þn�1ðK1 þ C	2Þ (70)

and the values with e0 and e1 are

x0nb ¼ ð�1Þ
2n�1x0ðn�1Þk; x1nk ¼ �x1ðn�1Þk þ 2ð�1Þn�1ðK1 þ C	2Þ. (71)

The values (71) are the initial values for A0 and A1 for the following n intervals of motion. Thus, for the first
interval of motion the initial conditions (3) are

A0 ¼ A; A1 ¼ �ðK1 þ C	2Þ. (72)

The motion is

x ¼ A coso0t� eðK1 þ C	2Þ coso0tþ eðK1 þ C	2 cos 2o0tÞ. (73)

According to Eq. (70), the final position at t ¼ p=o is

xb ¼ �Aþ 2eðK1 þ C	2Þ. (74)

Using the previous consideration and the initial conditions (70), it can be concluded that the general form of
the constants is

A0 ¼ xb � e½ð�1Þn�1 � ð2n� 1Þ�ðK1 þ C	2Þ; A1 ¼ �ð2n� 1ÞðK1 þ C	2Þ (75)

and the motion is

x ¼ A0 coso0t� eð2n� 1ÞðK1 þ C	2Þ coso0tþ eð�1Þn�1ðK1 þ C	2 cos 2o0tÞ, (76)

with the initial conditions

xb ¼ ð�1Þ
n�1
½A� 2ðn� 1ÞeðK1 þ C	2Þ�; _xb ¼ 0, (77)

for n ¼ 1; 2. For the relation (76), the maximal displacements are

A; � A� 2eK1ð1�
2

3

a02
a00
Þ

� �
; A� 4eK1 1�

2

3

a02
a00

� �
; � A� 4eK1 1�

2

3

a02
a00

� �� �
; . . . . (78)

So, the maximal amplitudes decrease in arithmetic progression with difference of 2eK1ð1�
2
3

a0
2

a0
0
Þ for half of the

period of vibration (t ¼ p=o). The amplitude decrease decrement is

D ¼ ðAo0Þ
m=q 2da00

o2
0

1�
2

3

a02
a00

� �
. (79)

Due to the results obtained, it can be concluded:
1.
 The amplitude decrease depends on: the initial amplitude A, the degree of the damping force m=q, the
coefficient of damping 2d and the frequency o0.
2.
 The period of vibration does not depend on the order of the damping function for the case when the
damping coefficient is small.
3.
 For larger values of the damping coefficient, the amplitude decreases faster.

4.
 For the same fraction order, the higher the value of the initial amplitude, the faster the vibration amplitude

decreases.

5.
 For Ao0 ¼ 1, the amplitude decrement is approximately a linear function of m=q.

6.
 The decrease depends on the frequency of the system 
1=o2�m=q

0 : for o041 the amplitude decrease is
slower for smaller values of fraction order; for o0 ¼ 1 the change of the fraction order has no influence on
the amplitude decrease, and for o0o1 the decrease is faster for smaller fraction order.
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Fig. 1. The time history diagrams for dry friction ðxd � tÞ and viscous damping ðxv � tÞ for the following initial conditions: A ¼ 0:8,
A ¼ 0:6 and A ¼ 0:4.
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Fig. 2. Time-history diagrams obtained analytically ðxA � tÞ and numerically ðxN � tÞ.
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7.
 Besides, from Eq. (76) and its first time derivative, it can be concluded that the motion xðtÞ and velocity _xðtÞ
change their directions at the same time.
8.
 For

Ao0 ¼ 1:6971, (80)

the decrease decrement is approximately the same for viscous damping (m=q ¼ 1) and dry friction
(m=q ¼ 0). For Ao041:6971 the amplitude decrease is faster for viscous damping than for the dry friction.
For Ao0o1:6971 the damping decrease is faster for dry friction than for viscous damping.
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3.1. Examples

To prove the results obtained, two examples are provided:
1.
 In Fig. 1. the time history diagrams for the system with dry friction xd and viscous damping xv are plotted.
Using the relation (76) and the parameter values e ¼ 2d ¼ 0:1 and o ¼ 2

ffiffiffi
2
p

, the motion for various initial
values (A ¼ 0:4, 0:6 and 0:8) are calculated. For the initial condition A ¼ 0:6, the viscous damping and dry
friction have approximately the same decrease and their time history diagrams coincide. The two diagrams
represent the boundary between two groups of initial conditions: for A ¼ 0:4 the dry friction decreases
faster than for the viscous damping, and for A ¼ 0:8 the decrease is faster for viscous damping than for the
dry friction. The obtained results are in good agreement with conclusion 8.
2.
 In Fig. 2. the solution of the differential equation

€xþ x ¼ 0:05sgnð _xÞj _xj2=9,

with the initial conditions

xð0Þ ¼ 0:6; _xð0Þ ¼ 0,

is plotted. Using the suggested analytical procedure, the solution xA (76) is obtained. Comparing the
analytical solution xA with the ‘exact’ numerical one xN , obtained by Runge–Kutta procedure, it is evident
that the difference between them is negligible.

4. System with damping force close to dry friction

Let us consider the case when the order of the velocity term in the damping force is a small value (m=q ¼ e)
near zero ðm=q � 0Þ

€xþ o2xþ ð2dÞsgnð _xÞj _xje ¼ 0, (81)

i.e., between two zero velocities for the motion from right to left

€xþ o2x ¼ ð2dÞj _xje (82)

and for the motion from left to right

€xþ o2x ¼ �ð2dÞj _xje. (83)

The damping parameter d also need to be small. The method of variable amplitude and phase is adopted for
solving the differential equation (81).

Remark 4. In the paper the approximate solving method is developed for the differential equation (82) in the
time interval between two zero velocities. The same procedure is available for the differential equation (83). By
generalization of the obtained solutions the general solution for Eq. (81) is obtained.

For e ¼ 0, the differential equation (82) transforms to

€xþ o2x ¼ ð2dÞ, (84)

i.e., the differential equation of dry friction. The general solution of Eq. (84) is

x ¼
2d
o2
þ B sinðotþ aÞ, (85)

where the arbitrary constants B and a depend on the initial conditions x0 and _x0 ¼ 0

B ¼ x0 �
2d
o2

� �
; a ¼

p
2
. (86)
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Based on the solution (85) of Eq. (84), the trial solution of Eq. (82) is introduced

x ¼
2d
o2

� �
þ BðtÞ sincðtÞ, (87)

where

cðtÞ ¼ otþ aðtÞ, (88)

BðtÞ � B, cðtÞ � c and aðtÞ � a are the unknown time-dependent functions.
Introducing the assumption that the first time derivative has the form of the first time derivative of Eq. (87)

_x ¼ Bo cosc, (89)

the following constraint is to be satisfied:

_B sincþ B_a cosc ¼ 0. (90)

Substituting Eq. (87) and the time derivative of Eq. (89) into Eq. (82), we obtain

_Bo cosc� Bo_a sinc ¼ 2dððBo coscÞe � 1Þ. (91)

Using Eqs. (90) and (91) Eq. (81) is expressed as a system of two coupled first-order differential equations

_Bo ¼ 2dððBo coscÞe � 1Þ cosc, (92)

B_a ¼
2d
o
ð1� ðBo coscÞeÞ sinc. (93)

There is no closed form analytical solution for the systems (92)–(93). As the functions cosc and sinc are
periodical, the averaging procedure is introduced in order to find an approximate one. The averaging of the
periodic function c is done and the averaged differential equations are

_B ¼
1

p
ð2dÞBeoe�1

Z p

0

cos1þecdc, (94)

_a ¼ �
1

p
ð2dÞðBoÞe�1

Z p

0

cosce sincdc. (95)

Using the series expansion for e ¼ m=q [20]

cosec ¼
a000
2
þ
X1
k¼1

ða00k cosðkcÞ þ b00k sinðkcÞÞ, (96)

the averaged equations (94) and (95) are obtained

_B ¼ ð2dÞBeoe�1PðeÞ; _a ¼ �ð2dÞðBoÞe�1QðeÞ, (97)

where coefficients a000, a00k and b00k depend on e, and

PðeÞ ¼
1

p

Z p

0

X1
k¼1

a00k cosðkcÞ coscdc; QðeÞ ¼
1

p

Z p

0

X1
k¼1

b00k sinðkcÞ sincdc. (98)

Integrating the differential equations (97), we obtain

B ¼ B0 1þ
ð2dÞPðeÞð1� eÞ

ðB0oÞ
1�e t

� �1=ð1�eÞ
; a ¼ a0 �

QðeÞ
PðeÞð1� eÞ

ln 1þ
ð2dÞPðeÞð1� eÞ

ðB0oÞ
1�e t

����
����, (99)

where B0 and a0 are the initial values. Applying Eq. (99), the solution of Eq. (82) in the first approximation is
obtained

x ¼
2d
o2
þ B0 1þ

2dPðeÞt

ðB0oÞ
1�e

� �
sin o�

ð2dÞQðeÞ

ðB0oÞ
1�e

� �
tþ a0Þ

� �
. (100)
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The suggested procedure is suitable for solving (83) and after some generalization of Eq. (100) the solution of
Eq. (81) in the first approximation is

xn ¼ ð�1Þ
n�1 2d

o2
þ Bn�1 1þ

2dPðeÞt

ðBn�1oÞ
1�e

� �
sin o� ð�1Þn�1

ð2dÞQðeÞ

ðBn�1oÞ
1�e

� �
tþ an�1

� �
 �
, (101)

where Bn�1 and an�1 are initial conditions for certain time interval of motion between two zero velocities. For
the series expansion of functions [21]

PðeÞ ¼ eP1 þOðe2Þ; QðeÞ ¼ eQ1 þO1ðe2Þ; expðedn�1tÞ ¼ 1þ edn�1tþ � � � , (102)

where

dn�1 ¼
2dP1

ðBn�1oÞ
1�e , (103)

the solution (101) is

xn ¼ ð�1Þ
n�1 2d

o2
þ Bn�1 expðedn�1tÞ sin o� eð�1Þn�1

ð2dÞQ1

ðBn�1oÞ
1�e

� �
tþ an�1Þ

� �
 �
. (104)

For the initial conditions (3), the arbitrary constants in the first interval of motion are

B0 cos
ed0
o

� �
¼ A�

2d
o2
; a0 ¼

p
2
þ

ed0
o

. (105)

The motion in this direction stops at

x1b ¼
2d
o2
� B0 exp

ed0p
o

� �
cos

ed0
o

� �
; _x1b ¼ 0. (106)

These values are the initial values for the motion in the other direction. For nX2, the arbitrary constants are

Bn�1 cos
edn�1

o

� �
¼ Bn�2 exp

edn�2p
o

� �
cos

edn�2

o

� �
� 2

2d
o2

� �
; an�1 ¼

p
2
þ

edn�1

o
. (107)

For the sake of simplicity, in Eq. (107) the series expansion of cosðedn�1=o) is introduced. Using the first
term in the series (cosðedn�1=oÞ � 1) and the assumption that ep0=o is sufficiently small, the arbitrary
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Fig. 3. Limits of motion and time-history diagrams obtained analytically ðxA � tÞ and numerically ðxN � tÞ.
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Fig. 4. Time-history diagrams for various values of damping order: viscous damping xv, dry friction xd and x� when m=q ¼ 0:05.
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constants are

Bn�1 ¼ A�
2d
o2

for n ¼ 1, (108)

Bn�1 ¼ � 2
2d
o2

� �
þ Bn�2 expðedn�2p=oÞ for nX2, (109)

and the phase angle

an�1 ¼
p
2
. (110)

The motion of the system without an initial velocity is possible only when the elastic force jo2xj is higher
than the damping force 2dj _xje. For e51, the limits of motion are

�
2d
o2

oxno
2d
o2

. (111)

For this interval the motion stops and the velocity is zero.
4.1. Examples

To prove the accuracy of the suggested procedure, some numerical examples are given.
1. The parameters of the system are: o ¼ 1, 2d ¼ 0:1, e ¼ 0:05 and the initial conditions xð0Þ ¼ 0:5 and

_xð0Þ ¼ 0. Using the relations (104) and the formula for the limits of motion (111), the approximate time
history diagram xA � t is plotted (Fig. 3). The solution is compared with xN � t obtained numerically by
Runge–Kutta procedure. It is evident that the difference between the curves is negligible.

2. In Fig. 4, the time-history diagrams for various values of the parameter e are plotted. For o ¼ 1, 2d ¼ 0:1
and the initial values xð0Þ ¼ 0:5 and _xð0Þ ¼ 0, the time history diagrams for m=q ¼ 0, m=q ¼ 0:05 and e ¼ 1 are



ARTICLE IN PRESS
L. Cveticanin / Journal of Sound and Vibration 317 (2008) 866–882 881
shown. The curve xe � t, for m=q ¼ 0:05, is between two curves: dry friction xd � t (when m=q ¼ 0), and
viscous damping xv � t (when m=q ¼ 1), but very close to the curve of dry friction.

5. Conclusion

The following can be concluded:
1.
 The oscillations of the system with fraction order damping are between two limits: the motion of the system
with dry friction and the motion of the system with linear viscous damping.
2.
 The vibrations depend on the fraction order of the damping force: for smaller values the motion is closer to
dry friction and for higher values to the motion of the system with linear viscous damping.
3.
 The frequency of vibration and also the quasi-period of vibrations depend on the initial amplitude and
fraction order of the damping force. For the case of a small damping coefficient, the influence of the
fraction order of the damping force can be omitted.
4.
 The amplitude decrease decrement depends on the initial amplitude and the fraction order of the damping
force. For a small coefficient of the damping force, the amplitude decrease is in arithmetic progression.
5.
 For the case of a small damping coefficient when Ao ¼ 1:6971, the vibration decrease is independent on
the fraction order.
6.
 The asymptotic results obtained give the possibility of using simple analytical expressions for the vibrations
of the system with fraction order damping regardless of the values of the parameter m=q. More specifically:
� the asymptotic (39) can be used for 0pm=qp1 and 2dX0,
� the asymptotic (104) is valid for 0pm=qo0:1 and 2dX0,
� the asymptotic (76) can be used for 0pm=qp1 and 0p2dp0:1.

Note that there are overlapping domains of asymptotic validity.

All the approximations given in the paper are valid for the time interval for which the length is given by two
consecutive zeros of _x. At the end of the interval the displacement x is calculated and it represents the initial
condition for the next time interval.
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